Pharmacological inhibition of leukotriene biosynthesis: effects on the heart conductance.

نویسندگان

  • M Sanak
  • J Dropinski
  • B Sokolowska
  • J Faber
  • M Rzeszutko
  • A Szczeklik
چکیده

Leukotrienes are lipid mediators produced via 5-lipooxygenase pathway of arachidonic acid. At least two cysteinyl-leukotrienes receptors are highly expressed in the heart, including the conduction system. Coronary angiography or angioplasty is accompanied by release of cysteinyl leukotrienes into coronary circulation and into urine. We tested the hypothesis that inhibition of leukotrienes biosynthesis would affect the conductance system function. In a double-blind placebo controlled study, patients with stable angina undergoing elective coronary catheterization or angioplasty were randomly assigned to 48 hrs treatment with a 5-lipoxgenase inhibitor (n=54) or placebo (n=49). ECG Holter recording was carried out for 24 hrs before and after the procedure and urinary leukotriene E(4) measurements were done. Inhibition of 5-lipoxygenase caused 26% reduction of urinary leukotriene E(4), associated with: 1) decrease in heart rate by about 7%, 2) enhanced heart rate variability; 3) protection against depressions in atrioventricular conductance and ventricular repolarization induced by the procedure. No effects on either arrhythmias, or ECG patterns of ischemia were noted. We conclude that pharmacological inhibition of 5-lipoxygenase, shortly before percutaneous coronary intervention, reveals specific actions of leukotrienes on the heart rhythm. Inhibitors of 5-lipoxygenase might be of interest as a novel class of cardiac drugs affecting the conductive system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5-Lipoxygenase Activating Protein (FLAP) Dependent Leukotriene Biosynthesis Inhibition (MK591) Attenuates Lipid A Endotoxin-Induced Inflammation

The Lipid A moiety of endotoxin potently activates TLR-4 dependent host innate immune responses. We demonstrate that Lipid-A mediated leukotriene biosynthesis regulates pathogen-associated molecular patterns (PAMP)-dependent macrophage activation. Stimulation of murine macrophages (RAW264.7) with E. coli 0111:B4 endotoxin (LPS) or Kdo2-lipid A (Lipid A) induced inflammation and Lipid A was suff...

متن کامل

Leukotriene receptor antagonists and biosynthesis inhibitors: potential breakthrough in asthma therapy.

Cysteinyl leukotrienes are potent bronchoconstrictors, inducers of airway microvascular leakage and oedema, and of mucus secretion, in addition to causing an eosinophilic airway infiltration. Increased urinary excretion of the cysteinyl leukotriene E4 (LTE4) has been demonstrated following allergen challenge and during acute asthma attacks. Strategies for inhibition of cysteinyl leukotriene eff...

متن کامل

MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes.

Recently, we have shown that ionophore activation of human leukocytes results in leukotriene synthesis and a translocation of 5-lipoxygenase from the cytosol to cellular membrane. This membrane translocation was postulated to be an important early activation step for the enzyme. 3-[1-(p-Chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2, 2- dimethylpropanoic acid (MK886) is a potent and ...

متن کامل

PPARα/γ-Independent Effects of PPARα/γ Ligands on Cysteinyl Leukotriene Production in Mast Cells

Peroxisome proliferator-activated receptor (PPAR) alpha ligands (Wy-14,643, and fenofibrate) and PPARgamma ligands (troglitazone and ciglitazone) inhibit antigen-induced cysteinyl leukotriene production in immunoglobulin E-treated mast cells. The inhibitory effect of these ligands on cysteinyl leukotriene production is quite strong and is almost equivalent to that of the anti-asthma compound zi...

متن کامل

Phenotyping drug polypharmacology via eicosanoid profiling of blood.

It is widely accepted that small-molecule drugs, despite their selectivity at primary targets, exert pharmacological effects (and safety liabilities) through a multiplicity of pathways. As such, it has proved extremely difficult to experimentally assess polypharmacology in an agnostic fashion. Profiling of metabolites produced as part of physiological responses to pharmacological stimuli provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physiology and pharmacology : an official journal of the Polish Physiological Society

دوره 61 1  شماره 

صفحات  -

تاریخ انتشار 2010